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An investigation into non-linear asymmetric vibrations of a clamped circular plate under
a harmonic excitation is made. We re-examined a primary resonance studied by Sridhar,
Mook and Nayfeh, in which the frequency of excitation is near the natural frequency of an
asymmetric mode of the plate. We corrected their solvability conditions and found that in
the absence of internal resonance, the steady state response can have not only the form of
standing wave but also the form of travelling wave, which is a remarkable contrast to their
conclusion.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

A clamped circular plate experiences mid-plane stretching when deflected. The influence of
this stretching on the dynamic response increases with the amplitude of the response. This
situation can be described with non-linear strain-displacement equations and a linear
stress—strain law which give us the dynamic analogue of the von Karman equations with
geometric non-linearity. Non-linear dynamic responses of a clamped circular plate
subjected to harmonic excitations have been investigated by two approaches. One is to
include symmetric vibrations and the other asymmetric vibrations. For symmetric
responses, Sridhar et al. [1] and Hadian and Nayfeh [2] studied primary resonance of a
circular plate with three-mode interaction. Lee and Kim [3] studied combination
resonances of the plate. In these studies the steady state response can only have the
superposition of standing wave components.

For asymmetric responses, Sridhar et al. [4] derived solvability conditions for modal
interactions of a clamped circular plate. These conditions are said to be general in the
sense of two aspects. First, the conditions include asymmetric vibrations as well as
symmetric vibrations. Second, the conditions include all of natural modes. They used these
conditions to examine two cases. One is the case of the absence of internal resonance and
the other is the case of the internal resonance involving four modes. They concluded that
in the absence of internal resonance, the steady state response can only have the form of a
standing wave. When the frequency of excitation is near the highest frequency involved in
the internal resonance, the steady state response was said to be given by a superposition of
the standing wave components of all the modes involved in the internal resonance, or a
superposition of the standing wave components of all the lower modes and the travelling
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wave component of the highest mode involved in the internal resonance. However, they
did not plot any illustrations on the responses.

In this study, we re-examined the analysis by Sridhar et al. [4] to find that they had
misderived the solvability conditions in applying the method of multiple scales. We
corrected the conditions and found that in the absence of internal resonance, the steady
state response can have not only the form of a standing wave but also the form of a
travelling wave, which is a remarkable contrast to their conclusion [4].

2. GOVERNING EQUATIONS

The equations governing the free, undamped oscillations of non-uniform circular plates
were derived by Efstathiades [5]. These equations are simplified to fit the special case of
uniform plates, and damping and forcing terms are added. Then the non-dimensionalized
equations of motion of a circular plate shown in Figure 1 are given as follows [4]:
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Figure 1. A schematic diagram of a clamped circular plate.



NON-LINEAR ASYMMETRIC VIBRATIONS 655

¢ is a small parameter given by the Poisson ratio v and the thickness of the plate 4, ¢ is the
damping coefficient, p* is the forcing function, w is the deflection of the middle surface, F
is the force function which satisfies the in-plane equilibrium conditions (in-plane inertia is

neglected), and
2 10 10\
4 _
= A I A A . 4
v (8r2 + ror * r2 302) (#)
The boundary conditions are developed for the plates which are clamped along a
circular edge. For all ¢, and 0,

ow
w=20 E_O atr=1, (5a,b)
PF  [10F 1OF
ETWQE*ﬁ%ﬂ‘Od”‘“ o

83_F 10°F 1OF 2+4v O*F  3+v0*F

or + ror:  r*or + 2 o0t P o0

=0 atr=1. (6b)

In addition, it is necessary to require the solution to be bounded at r = 0.

3. SOLUTION

In order to re-examine the analysis by Sridhar et al. [4] we expand w and F as follows:

o0

w(r,0,t;e) = Zsjwj(r, 0, Ty, T,...),
7=0
o0

F(r,0,66) => e/F(r,0,To, Th,...), (7a,b)
Jj=0

where T,, = &"t.
Substituting equations (7) into equations (1) and (2), and equating coefficients of like
powers of ¢ yields

D(%WO + V4WQ =0, (8)
2
V4F, = l@zwo_l% _82w0 10wy lazwo 7 (9)
rordd 12 90 o2 \r or r? 9¢?
*wy (1 OF, 1 H*F,
2 4 ) 0 0 0
DOM}I + V wp = — 2DOD1 wo — 2(,D()M/() +p* + arz (;W ﬁW)
2 2 2 2
GO hoLow 1 0wo o (10°F 10F) (1070 10w
orr \r or 12 90 rorod  r? 90 rorod 2 00

etc., where D, = 0/0T,.
Substituting equations (7) into equations (5) and (6), and equating coefficients of like
powers of &, one obtains
ow;

w; =0, E:O atr=1, (1la,b)
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O°F,  (0F, O°F
8}‘2 v<8r+592) =0 atr—l, (123)
OF  OF OF OF, O°F,

_ =) - — =0 atr=1 12b
ar T ar o Tt ggp B GE =0 atr= (120)
for all j, 6 and ¢. In addition, it is necessary to require w; and £, for all j, to be bounded at
r=0.

It follows from equations (8) and (11) that

Z(bOm AOn iwom To + Z (/)nm {Anme (o To+n0) +B e<wm7rTO no) } + ce, (13)

= n,m=1
where the ¢,,,(r) are the linear shape functions in the r direction given by

Jn (’/’nm) I

In(;/’nlﬂ) n(n"mr) (14)

d)nm = Knm |:Jn (nnmr) -

the x,,,, are chosen so that

1
/ rqﬁflmdr: 1.
0

The function J,, are Bessel function of the first kind, of order 7, and the function I, are
modified Bessel function of the first kind, of order n. The 1,,, are the roots of 1,(17)J,(17) —
L(mJI.(n) =0, 0, = nﬁm, the A,,, and the B,,, are complex functions of the all 7}, for
n>=1 which are to be determined from the solvability conditions at the next level of
approximation, and cc represents the complex conjugate of the preceding terms. In ¢,
and w,,;,, the first subscript refers to the numbers of nodal diameters and the second
subscript refers to the number of nodal circles including the boundary. The first
summation of the right-hand side in equation (13) represents a superposition of symmetric
standing waves. And the second summation looks a superposition of asymmetric travelling
waves, but it contains both travelling and standing waves depending on the relative values
of the A,,, and B,,,. The solution can also be written in the following equivalent form:

0
wo = E E O (Pt (To, Ty . . ) ‘”, (15)
n=—00 m=
where
Uy = Anmelwm"TO + BnmeﬂU)ano’ (16)

O = P and O_, = @u. Because wy is real,
Afnm = Dum- (17)

Substituting equation (15) into equation (9) leads to

V*F, = Z Z (11, PG )ttt €)Y (18)

n,p=—o00 m,q=1
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E(nm,pq) = — @<(/):1m - ¢”’"> <¢;q _ ‘z)pq)

r? r r

where

1 1
- Z ((f):zmd);q)l + ﬁ(pz(f’::md)pq + n2 ;;lqd)nm)

and primes denote differentiation with respect to r.
An expansion for Fj is assumed in the following form:

o]

Fo= Y Ur,To,Ty,...)e". (19)

n=-—0o0

Substituting equation (19) into equation (18), multiplying the result by e, and
integrating from 0 = 0 to 2z, we obtain

VgUa = Z Z E(nm, pq)unnityg, (20)
n=—00 m,q=1
where
and
v [ 10 @
a orr ror 12|’

Then U, is further expanded as
Us = van(To, Tt . (1), (22)
n=1
where the ,, are the eigenfunctions of the following problem:
(vi - 5jt;q)lrban =0 inr= [07 l]a

where y,, is bounded at r = 0 and, from equations (12),
Vi = V(Wn — @) = 0 and Y 4y, — i, — @[22+ )W, — (3 + V)] =0
for all 0 and ¢ at r = 1. It follows that
Van = RanlJa(Can”) = Canda(Eant)], (23)

where the k,, are chosen so that

1
/ rlﬂin dr=1,
0

la(a+ (v + 1) = &1 a(Can) = Ean(v + DIar1 (Ean)
[a(a + 1)(V + l) + éin]lu(éan) - étm(v + I)Iafl(éan)

and ¢, are the roots of

a*(a+ 1)(v+ D)[Ja(Eu) = Canda(Ean)] — @Ean(v + D[Tar1 (Ean) = Candamr (Ean)]

+ aégzm[‘]a(éan) + Eanla((:an)] - ézn[‘]afl(éan) + Ean]afl(éan)] =0.

Can =
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Substituting equation (22) into equation (20), multiplying the result by ry,,, and then
integrating from r = 0 to 1, one obtains

vap(To, Th,...) = Z Z G(nm, pa; ab)uumipg, (24)
n=—00 m,q=1
where
G(nm,pg;ab) = ¢, / o E(nm, pq) dr (25)

and p,a and n are related according to equation (21). It follows from equations (24), (22)
and (19) that

Z Z ‘pabG(nm7pq§ ab)”nm”pqeiaea (26)

a,n=—00 bm,q=1

where p = a — n.
Substituting equations (26) dnd (15) into equation (10) leads to

Déwl + Vv Wy = Z Z 21wnm¢nm[(D1Anm + CnmAnm)"31(0”’"T0

n=—o00 m=1

- (Dlgnm + cntnm)e_imeﬂ)] in +p (V, 0, t)
+ Z Z G(nm, pq;ab)E(cd, ab)ucdu,,qunmel(““j(),
a,n,c=—00 bmd,q=1

where modal damping has been assumed, p* has been expanded as

*(r,0,1) Z ZP,,qunm im0+tm) cos 1T

n=—o00 m=

and

r

25 (W= 1) (H = 00).

Because w; and wy satisfy the same boundary conditions, an expansion for w; is assumed
in the form

" " b
(Cd pq) ¢Ld <l//ab - lpab) wab <¢(‘d ‘ ¢(d>

wp = Z ZHnm T(),T], ')(rbnm . (28)
n=—00 m=

Substituting equation (28) into equation (27), multiplying the result by r¢,,(r)e *?  and
integrating the result from r =0 to 1 and 6 = 0 to 2%, one obtains

D} Hyy + of Hy

= —2iww[(D1 Ak + ek Ar)e ™" — (D1 Biy + cuaBia)e ] 4+ LPye ™ [ 10 4 &70]

+ Z Z (kl, cd,nm, pq) Zse“o k=0,1,..., I=12,., (29)

n,c=—00 d,m,q=1 j=1

where

o0

1
I'(kl, cd,nm, pq) Z G(nm, pq; ab / ré E(cd, ab) dr, (30a)
b=1 0
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a=k—c, p=k—c—n, (30b,¢)

A; are frequency combinations, and S; are functions of 4,,, and B,,. Both A; and S; are
llsted in Appendix A. Up to now, the result may be said to be the same as one by Srldhar
et al. [4] if we ignore several misprints in reference [4].

Eliminating the secular terms (the coefficients of e*i®#70) from the right-hand sides of
equation (29), we obtain the following solvability conditions:

_ Ziwkl(DlAkl + cklAk/) + Akl{ Z Z Yictnm (Anr11/1nnl + Bntnm) - VklklA/cllakl}

n=—oo m=1

+2(1 = 5k0)Bkl{Z Ttk Ak Biom — f/dklAlekl} + Njj+ Ry =0, (31a)
m=1

2iow (D1 Biy + ciBir) + Bkl{ S Vit (AumAum + BumBum) — szk/Blekz}

n=—o00 m=1

2(1 - 5kO)Ak1{Z Pt Atem Bian — szk/Alekl} + N + R =0, (31b)
m=1
where d;( are the Kronecker delta, R,fl‘B are terms due to internal resonances, if any, N, kA,’B
are terms due to the external excitation, if any, and y;,,,, and 7, are constants given in
Appendix A. It is noted that these solvability conditions are different from those by
Sridhar et al. [4]. Terms including expressions A Ay, BB and 2(1 — Jxp) in equation (31)
are added to their solvability conditions. We can only conjecture two possible ways how
this deviation happens. First, they might fail to collect all of the secular terms from
equation (29). Second, the misprints might influence seriously the solvability conditions.

4. STEADY STATE RESPONSES

In this study, we consider a primary resonance in the absence of internal resonance. The
frequency of excitation 4 is near natural frequency wg. We introduce a detuning
parameter, o, defined as follows:

L=wy+6,  ¢=c¢0, (32a,b)
N;; IP e (0T 1+tm) N/{] lp e —({o Ty —Tum) (33a,b)
and
NGP =0 for ki#fy. (33¢)
Next we let
Ao — L, By — Yoo, (342,D)

where dy, by, 4 and f,,, are real functions of 7. Substituting equations (33) and (34)
into (31) and separating the result into real imaginary parts yields

or(ar’ + erarr) = 5(1 = 0k0)briSiy — 304701y Pry sin iy, = 0, (35a)

G)k/(bk/ + Cklbkl) + %(] — 51(0)611(13*,1[ — %5kf5/ngg sin M/I”g =0, (35b)
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oriaiont’ + gar (e — Vanadiy) + 51— 0r0)brify + 30k 01y Py cos ufy =0, (35¢)

oribrBri’ + i (Skr = Paabiy) + 5(1 = ko) awiyy + 3ird1yPpy cos pf =0, (35d)

where

Skl = Z Z yklnm o T+ b2 ) (36‘1)

n=—00 m=
= mi:l Pkttm@emDkom S0tk — B — et + Brr) (36b)

S = g:l(l = Smt) Vitiom@mbrm €08 (%em — PBrom — %t + Bra), (36¢)
Wy =oTi+1y—oy,  uy=0Ti— 15— By (37a,b)

Terms including § in the system of equations (35), and terms of yyya;, and yuub7,
respectively, in equations (35¢) and (35d) make system (35) different from the
corresponding system by Sridhar et al. [4]. Terms including § have something to do with
internal resonance. Since in this study we consider the case of no internal resonance, these
terms do not affect the result at all. Terms of y,az; and y,;,b7,, therefore, are the effective
difference between both systems by us and Sridhar et al. [4].

Each equilibrium solution (a); = b}, = ,u_/‘ﬁ; = ,u_/l,’; =0) of the system of autonomous
ordinary differential equations (35) is corresponding to a steady state response. It follows
immediately from equations (35) that

ayy = by =0 for kl#fg

and that neither ay and by can be zero. Thus, the steady state solution is given by
equations (35) which can be rewritten as

Py, . P
OfyCry = —ch sin yy , Wfy0 + $ g, + 2b7,) = —ﬁ cos uf, (38a,b)
g g

Py . P
WpyCly = —ijjf sin H?g, Wyo + éyfgﬁ,(Zafq + b}g) zbf‘” cos y/q (39a,b)
g

Instead of Zb%g and 2a/ , respectively, in equations (38b) and (39b), Sridhar et al. [4]
obtained b)%g and afg respectively, in their corresponding equations.
Using equations (37), (34) and (13), one can write the steady state forced responses as

w = ¢, {ag cos(it — u_}‘g + 0+ 14) + by, cos(At — ,u?g —f0—14)} + O(e), (40)

which is a superposition of two travelling waves rotating clockwise and counterclockwise,
respectively. Form (40) can also be written as follows:

w = Zj cos(At + (1), cos f0 + Z; cos(At + () ¢y, sin f0 + Oe), (41)
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which is the superposition of two standing waves. The constants Z;, Z,,{; and {, are given
in Appendix A.

It depends on the relations between ay, by, uf, . and u_;’g whether form (40) turns out to
be standing or travelling wave. When ay, = by, and 1y = ,u_}l}g, form (40) can be reduced to
the standing wave of the form

w = 2 az cos(At — uj) cos(f0 + 17) + O(e), (42)

which is similar to the natural mode corresponding to wy,. Form (40) gives travelling wave
otherwise.

5. NUMERICAL RESULTS

For a numerical example we consider the case of f =1 and g =1. The corres-
ponding mode has one nodal diameter and no other nodal circle but the boundary.
In Figure 2 the amplitudes «@;; and b, are plotted as functions of detuning para-
meter ¢ = &g when w;; = 212604 [6], v=1/3, ¢ =0-001067, ec =001, ¢P;; =4 and
711 = 0. Branches SS1, US1, US2 and SS2 represent the standing waves, while branches
ST1, UT1, and UT2 represent travelling waves. Solid and dotted lines denote, respectively,
stable and unstable responses. Except for the instability of branch USI, the response in the
form of standing wave is the response of Duffing oscillator. The stable response in the form
of travelling wave, {STl,, STlp} represents {aj,b;1} or {bi,a;}. When ¢<d
and 6| <d<d,, respectively, standing and travelling waves coexist in reality. While
standing and travelling waves coexist when ¢, <d <d3, standing wave only exists when
6 > 63. This result is remarkably different from one by Sridhar et al. [4]. They expected that
the response is in the form of standing wave, which is the response of Duffing oscillator. We
believe that this difference comes from the correction of solvability conditions.

Considering the case of no internal resonance as the case of 1:1 internal resonance
between two modes having shapes of ¢, cosf0 and ¢y, sinf0 corresponding to one
natural frequency wy,, Nayfeh and Vakakis [7] observed the coexistence of subharmonic
standing and travelling waves in the case of subharmonic resonance. We believe that their
result supports the validity of our observation.

1.5

Figure 2. Variations of the amplitudes with detuning parameter ¢ = ¢s when ¢P;; = 4. ——, stable; ———,
unstable.
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Figure 3. Deflections of the circular plate for one period of excitation (7 = 2x/4) when a;; = 1-1608, by; =
1-1608, uf, = 3-0179, u’l’l =3.0179, wy; = 21-2604, ¢ = 0-1 and 7;; = 0. A standing wave (a;; = byy).

In order to show the deflection of the plate we consider the case of ¢ = 0-1, in which
there exist three stable responses (one is a standing wave and two are travelling waves).
The initial condition determines which deflection is to be realized. Figures 3—5 represent
deflections corresponding to the stable responses of the plate for one period of excitation
T(=2=m/2). A standing wave (a;; = by;) is shown in Figure 3(a-h), in each of which we
can see a nodal line at Smin past 7 o’clock. Figures 4 and 5 represent travelling waves,
which are rotating clock-wise (a;; > b;1) and counterclockwise (a;; <bj;) respectively. It
is noted that the dominant amplitude (a;; or b;) determines the direction of the rotation.
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Figure 4. Deflections of the circular plate for one period of excitation (7 = 2n/4) when a;; = 47974, by, =
0-7464, pf, = 0-5352, b, = 007943, w1 = 21-2604, ¢ = 0-1 and 1, = 0. A travelling wave (a1, > byy).

In these figures we can see that the period of deflection is the same as the one of excitation,
which means the response of a primary resonance.

6. CONCLUSIONS

In order to investigate non-linear asymmetric vibrations of a clamped circular plate
under a harmonic excitation, we examine a primary resonance, in which the frequency of
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Figure 5. Deflections of the circular plate for one period of excitation (7 = 2r/4) when a;; = 0-7464, by, =
4.7974, puf, = 007943, ulfl = 0-5352 w;; =21-2604, 6 = 0-1 and 7;; = 0. A travelling wave (a;; <byy).

excitation is near the natural frequency of an asymmetric mode of the plate. We re-
examined the analysis by Sridhar et al. [4] to correct their solvability conditions and to find
that in the absence of internal resonance, the steady state response can have not only the
form of a standing wave but also the form of a travelling wave, which is a remarkable
contrast to their conclusion.
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APPENDIX A

Coefficients S; and frequency combinations A; in equations (29) are given in Table Al.

TABLE Al

J Sj 4

1 Achnm/_lpq WOed + O + Dpg
2 A('d/_lmanq Wed T Opm — WDpg

3 /_lchnmqu Wed — Opm + Dpg
4 Et’d/_lnmfflpq —Wed + O + Wpg
5 Ecd@ntpq —Wed — Wpm — Wpg
6 _ctanm4pq —Wed — Dpm + Wpg
7 Bcd"!nm@pq —Wed + Opm — Wpq
8 ArdBntpq Wed — Wpm — Wpg

Vimm = T (KL, kl,nm, —nm) + T (kl, —nm, kl, nm) + T (ki,nm, —nm, k),
Vem = T (kL km, km, —kl) + I'(kl, —kl, km, km) + I'(ki, km, —ki, km),

Zy = \/a%l + 07 + 2anbyy cos(ufy — ufy — 2tn),

Zy = \/”%1 + b7, = 2anbyy cos(ufy — ufy — 2tn),

ay sin(u§, — t11) + byy sin(pd, +111)

ary cos(pd, — i) + biy cos(uh, +111)’

—ay; cos(pd; — t11) + biy cos(h, + 1)
ayy sin(u§, — t11) — by sin(d, + 1)

tan{; =

tan{, =
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