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An investigation into non-linear asymmetric vibrations of a clamped circular plate under
a harmonic excitation is made. We re-examined a primary resonance studied by Sridhar,
Mook and Nayfeh, in which the frequency of excitation is near the natural frequency of an
asymmetric mode of the plate. We corrected their solvability conditions and found that in
the absence of internal resonance, the steady state response can have not only the form of
standing wave but also the form of travelling wave, which is a remarkable contrast to their
conclusion.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A clamped circular plate experiences mid-plane stretching when deflected. The influence of
this stretching on the dynamic response increases with the amplitude of the response. This
situation can be described with non-linear strain-displacement equations and a linear
stress–strain law which give us the dynamic analogue of the von Karman equations with
geometric non-linearity. Non-linear dynamic responses of a clamped circular plate
subjected to harmonic excitations have been investigated by two approaches. One is to
include symmetric vibrations and the other asymmetric vibrations. For symmetric
responses, Sridhar et al. [1] and Hadian and Nayfeh [2] studied primary resonance of a
circular plate with three-mode interaction. Lee and Kim [3] studied combination
resonances of the plate. In these studies the steady state response can only have the
superposition of standing wave components.

For asymmetric responses, Sridhar et al. [4] derived solvability conditions for modal
interactions of a clamped circular plate. These conditions are said to be general in the
sense of two aspects. First, the conditions include asymmetric vibrations as well as
symmetric vibrations. Second, the conditions include all of natural modes. They used these
conditions to examine two cases. One is the case of the absence of internal resonance and
the other is the case of the internal resonance involving four modes. They concluded that
in the absence of internal resonance, the steady state response can only have the form of a
standing wave. When the frequency of excitation is near the highest frequency involved in
the internal resonance, the steady state response was said to be given by a superposition of
the standing wave components of all the modes involved in the internal resonance, or a
superposition of the standing wave components of all the lower modes and the travelling
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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wave component of the highest mode involved in the internal resonance. However, they
did not plot any illustrations on the responses.

In this study, we re-examined the analysis by Sridhar et al. [4] to find that they had
misderived the solvability conditions in applying the method of multiple scales. We
corrected the conditions and found that in the absence of internal resonance, the steady
state response can have not only the form of a standing wave but also the form of a
travelling wave, which is a remarkable contrast to their conclusion [4].

2. GOVERNING EQUATIONS

The equations governing the free, undamped oscillations of non-uniform circular plates
were derived by Efstathiades [5]. These equations are simplified to fit the special case of
uniform plates, and damping and forcing terms are added. Then the non-dimensionalized
equations of motion of a circular plate shown in Figure 1 are given as follows [4]:
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Figure 1. A schematic diagram of a clamped circular plate.
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e is a small parameter given by the Poisson ratio n and the thickness of the plate h; c is the
damping coefficient, pn is the forcing function, w is the deflection of the middle surface, F

is the force function which satisfies the in-plane equilibrium conditions (in-plane inertia is
neglected), and
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The boundary conditions are developed for the plates which are clamped along a
circular edge. For all t; and y;

w ¼ 0
@w

@r
¼ 0 at r ¼ 1; ð5a; bÞ

@2F

@r2
� n

1

r

@F

@r
þ 1

r2
@2F

@y2

� �
¼ 0 at r ¼ 1; ð6aÞ

@3F

@r3
þ 1

r

@2F

@r2
� 1

r2
@F

@r
þ 2þ n

r2
@3F

@r@y2
� 3þ n

r3
@2F

@y2
¼ 0 at r ¼ 1: ð6bÞ

In addition, it is necessary to require the solution to be bounded at r ¼ 0:

3. SOLUTION

In order to re-examine the analysis by Sridhar et al. [4] we expand w and F as follows:
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where Tn ¼ ent:
Substituting equations (7) into equations (1) and (2), and equating coefficients of like

powers of e yields
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etc., where Dn ¼ @=@Tn:
Substituting equations (7) into equations (5) and (6), and equating coefficients of like

powers of e; one obtains

wj ¼ 0;
@wj
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¼ 0 at r ¼ 1; ð11a; bÞ
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for all j; y and t: In addition, it is necessary to require wj and Fj; for all j; to be bounded at
r ¼ 0:

It follows from equations (8) and (11) that
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where the fnmðrÞ are the linear shape functions in the r direction given by

fnm ¼ knm JnðZnmrÞ � JnðZnmÞ
InðZnmÞ

InðnnmrÞ
� �

ð14Þ

the knm are chosen so that Z 1

0

rf2
nm dr ¼ 1:

The function Jn are Bessel function of the first kind, of order n; and the function In are
modified Bessel function of the first kind, of order n: The Znm are the roots of InðZÞJ0nðZÞ �
I0nðZÞJnðZÞ ¼ 0;onm ¼ Z2nm; the Anm and the Bnm are complex functions of the all Tn for
n51 which are to be determined from the solvability conditions at the next level of
approximation, and cc represents the complex conjugate of the preceding terms. In fnm

and onm; the first subscript refers to the numbers of nodal diameters and the second
subscript refers to the number of nodal circles including the boundary. The first
summation of the right-hand side in equation (13) represents a superposition of symmetric
standing waves. And the second summation looks a superposition of asymmetric travelling
waves, but it contains both travelling and standing waves depending on the relative values
of the Anm and Bnm: The solution can also be written in the following equivalent form:
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Substituting equation (15) into equation (9) leads to
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and primes denote differentiation with respect to r:
An expansion for F0 is assumed in the following form:
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Substituting equation (19) into equation (18), multiplying the result by e�iay; and
integrating from y ¼ 0 to 2p; we obtain

r4
aUa ¼

X1
n¼�1

X1
m;q¼1

Eðnm; pqÞunmupq; ð20Þ

where

p ¼ a � n ð21Þ

and

r4
a ¼ @2

@r2
þ 1

r

@

@r
� a2

r2

� �2
:

Then Ua is further expanded as
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where the can are the eigenfunctions of the following problem:
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Substituting equation (22) into equation (20), multiplying the result by rcab; and then
integrating from r ¼ 0 to 1, one obtains
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Substituting equations (26) and (15) into equation (10) leads to
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where modal damping has been assumed, pn has been expanded as

pnðr; y; tÞ ¼
X1

n¼�1

X1
m¼1

Pnmfnme
iðnyþtnmÞ cos lT0

and

#EEðcd; pqÞ ¼f00
cd

r
c0

ab �
a2

r
cab

� �
þ c00

ab

r
f0

cd � c2

r
fcd

� �

þ 2ac

r2
c0

ab �
1

r
cab

� �
f0

cd � 1

r
fcd

� �
:

Because w1 and w0 satisfy the same boundary conditions, an expansion for w1 is assumed
in the form

w1 ¼
X1

n¼�1

X1
m¼1

HnmðT0;T1; . . .Þfnme
iny: ð28Þ

Substituting equation (28) into equation (27), multiplying the result by rfklðrÞe�iky; and
integrating the result from r ¼ 0 to 1 and y ¼ 0 to 2p; one obtains
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a ¼ k � c; p ¼ k � c � n; ð30b; cÞ

Lj are frequency combinations, and Sj are functions of Anm and Bnm: Both Lj and Sj are
listed in Appendix A. Up to now, the result may be said to be the same as one by Sridhar
et al. [4] if we ignore several misprints in reference [4].

Eliminating the secular terms (the coefficients of e�iokl T0 ) from the right-hand sides of
equation (29), we obtain the following solvability conditions:
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where dk0 are the Kronecker delta, R
A;B
kl are terms due to internal resonances, if any, N

A;B
kl

are terms due to the external excitation, if any, and gklnm and #ggklkm are constants given in
Appendix A. It is noted that these solvability conditions are different from those by
Sridhar et al. [4]. Terms including expressions Akl

%AAkl ;Bkl
%BBkl and 2ð1� dk0Þ in equation (31)

are added to their solvability conditions. We can only conjecture two possible ways how
this deviation happens. First, they might fail to collect all of the secular terms from
equation (29). Second, the misprints might influence seriously the solvability conditions.

4. STEADY STATE RESPONSES

In this study, we consider a primary resonance in the absence of internal resonance. The
frequency of excitation l is near natural frequency ofg: We introduce a detuning
parameter, s; defined as follows:

l ¼ ofg þ #ss; #ss ¼ es; ð32a; bÞ
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and

NA;B
kl ¼ 0 for kl=fg: ð33cÞ

Next we let
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2
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2
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where anm; bnm; anm and bnm are real functions of T1: Substituting equations (33) and (34)
into (31) and separating the result into real imaginary parts yields
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ma
fg ¼ sT1 þ tfg � afg; mb

fg ¼ sT1 � tfg � bfg: ð37a; bÞ

Terms including #ss in the system of equations (35), and terms of gklkla
2
kl and gklklb

2
kl ;

respectively, in equations (35c) and (35d) make system (35) different from the
corresponding system by Sridhar et al. [4]. Terms including #ss have something to do with
internal resonance. Since in this study we consider the case of no internal resonance, these
terms do not affect the result at all. Terms of gklkla

2
kl and gklklb

2
kl ; therefore, are the effective

difference between both systems by us and Sridhar et al. [4].
Each equilibrium solution ða0

kl ¼ b0
kl ¼ ma0

fg ¼ mb0

fg ¼ 0) of the system of autonomous
ordinary differential equations (35) is corresponding to a steady state response. It follows
immediately from equations (35) that

akl ¼ bkl ¼ 0 for kl=fg

and that neither afg and bfg can be zero. Thus, the steady state solution is given by
equations (35) which can be rewritten as

ofgcfg ¼ Pfg

2afg

sin ma
fg; ofgsþ 1

8
gfgfgða2

fg þ 2b2
fgÞ ¼ �Pfg

2afg

cos ma
fg; ð38a; bÞ

ofgcfg ¼ Pfg

2bfg

sin mb
fg; ofgsþ 1

8
gfgfgð2a2

fg þ b2
fgÞ ¼ �Pfg

2bfg

cos mb
fg: ð39a; bÞ

Instead of 2b2
fg and 2a2

fg; respectively, in equations (38b) and (39b), Sridhar et al. [4]
obtained b2

fg and a2
fg; respectively, in their corresponding equations.

Using equations (37), (34) and (13), one can write the steady state forced responses as

w ¼ ffgfafg cosðlt � ma
fg þ f yþ tfgÞ þ bfg cosðlt � mb

fg � f y� tfgÞg þ OðeÞ; ð40Þ

which is a superposition of two travelling waves rotating clockwise and counterclockwise,
respectively. Form (40) can also be written as follows:

w ¼ Z1 cosðlt þ z1Þffg cos f yþ Z2 cosðlt þ z2Þffg sin f yþ OðeÞ; ð41Þ
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which is the superposition of two standing waves. The constants Z1;Z2; z1 and z2 are given
in Appendix A.

It depends on the relations between afg; bfg; ma
fg; and mb

fg whether form (40) turns out to
be standing or travelling wave. When afg ¼ bfg and ma

fg ¼ mb
fg; form (40) can be reduced to

the standing wave of the form

w ¼ 2ffgafg cosðlt � ma
fgÞ cosðf yþ tfgÞ þ OðeÞ; ð42Þ

which is similar to the natural mode corresponding to ofg: Form (40) gives travelling wave
otherwise.

5. NUMERICAL RESULTS

For a numerical example we consider the case of f ¼ 1 and g ¼ 1: The corres-
ponding mode has one nodal diameter and no other nodal circle but the boundary.
In Figure 2 the amplitudes a11 and b11 are plotted as functions of detuning para-
meter #ss ¼ es when o11 ¼ 21�2604 [6], n ¼ 1=3; e ¼ 0�001067; ec ¼ 0�01; eP11 ¼ 4 and
t11 ¼ 0: Branches SS1, US1, US2 and SS2 represent the standing waves, while branches
ST1, UT1, and UT2 represent travelling waves. Solid and dotted lines denote, respectively,
stable and unstable responses. Except for the instability of branch US1, the response in the
form of standing wave is the response of Duffing oscillator. The stable response in the form
of travelling wave, {ST1A, ST1B} represents fa11; b11g or fb11; a11g: When #ss5 #ss1
and #ss15 #ss5 #ss2; respectively, standing and travelling waves coexist in reality. While
standing and travelling waves coexist when #ss25 #ss5 #ss3; standing wave only exists when
#ss > #ss3: This result is remarkably different from one by Sridhar et al. [4]. They expected that
the response is in the form of standing wave, which is the response of Duffing oscillator. We
believe that this difference comes from the correction of solvability conditions.

Considering the case of no internal resonance as the case of 1:1 internal resonance
between two modes having shapes of ffg cos f y and ffg sin f y corresponding to one
natural frequency ofg; Nayfeh and Vakakis [7] observed the coexistence of subharmonic
standing and travelling waves in the case of subharmonic resonance. We believe that their
result supports the validity of our observation.
Figure 2. Variations of the amplitudes with detuning parameter #ss ¼ es when eP11 ¼ 4: }}, stable; – – –,
unstable.



Figure 3. Deflections of the circular plate for one period of excitation (T ¼ 2p=l) when a11 ¼ 1�1608; b11 ¼
1�1608; ma

11 ¼ 3�0179; mb
11 ¼ 3�0179; o11 ¼ 21�2604; #ss ¼ 0�1 and t11 ¼ 0: A standing wave ða11 ¼ b11Þ:
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In order to show the deflection of the plate we consider the case of #ss ¼ 0�1; in which
there exist three stable responses (one is a standing wave and two are travelling waves).
The initial condition determines which deflection is to be realized. Figures 3–5 represent
deflections corresponding to the stable responses of the plate for one period of excitation
Tð¼ 2p=lÞ: A standing wave ða11 ¼ b11Þ is shown in Figure 3(a–h), in each of which we
can see a nodal line at 5min past 7 o’clock. Figures 4 and 5 represent travelling waves,
which are rotating clock-wise ða11 > b11Þ and counterclockwise ða115b11Þ respectively. It
is noted that the dominant amplitude (a11 or b11) determines the direction of the rotation.



Figure 4. Deflections of the circular plate for one period of excitation (T ¼ 2p=l) when a11 ¼ 4�7974; b11 ¼
0�7464; ma

11 ¼ 0�5352; mb
11 ¼ 0�07943; o11 ¼ 21�2604; #ss ¼ 0�1 and t11 ¼ 0: A travelling wave ða11 > b11Þ:
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In these figures we can see that the period of deflection is the same as the one of excitation,
which means the response of a primary resonance.

6. CONCLUSIONS

In order to investigate non-linear asymmetric vibrations of a clamped circular plate
under a harmonic excitation, we examine a primary resonance, in which the frequency of



Figure 5. Deflections of the circular plate for one period of excitation (T ¼ 2p=l) when a11 ¼ 0�7464; b11 ¼
4�7974; ma

11 ¼ 0�07943; mb
11 ¼ 0�5352 o11 ¼ 21�2604; #ss ¼ 0�1 and t11 ¼ 0: A travelling wave ða115b11Þ:

M. H. YEO AND W. K. LEE664
excitation is near the natural frequency of an asymmetric mode of the plate. We re-
examined the analysis by Sridhar et al. [4] to correct their solvability conditions and to find
that in the absence of internal resonance, the steady state response can have not only the
form of a standing wave but also the form of a travelling wave, which is a remarkable
contrast to their conclusion.
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APPENDIX A

Coefficients Sj and frequency combinations Lj in equations (29) are given in Table A1.
Table A1

j Sj Lj

1 AcdAnmApq ocd þ onm þ opq

2 AcdAnm
%BBpq ocd þ onm � opq

3 Acd
%BBnmApq ocd � onm þ opq

4 %BBcdAnmApq �ocd þ onm þ opq

5 %BBcd
%BBnm

%BBpq �ocd � onm � opq

6 %BBcd
%BBnmApq �ocd � onm þ opq

7 %BBcdAnm
%BBpq �ocd þ onm � opq

8 Acd
%BBnm

%BBpq ocd � onm � opq

gklnm ¼ Gðkl; kl; nm;�nmÞ þ Gðkl;�nm; kl; nmÞ þ Gðkl; nm;�nm; klÞ;
#ggklkm ¼ Gðkl; km; km;�klÞ þ Gðkl;�kl; km; kmÞ þ Gðkl; km;�kl; kmÞ;

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 þ b211 þ 2a11b11 cosðma

11 � mb
11 � 2t11Þ

q
;

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a211 þ b211 � 2a11b11 cosðma

11 � mb
11 � 2t11Þ

q
;

tan z1 ¼
a11 sinðma

11 � t11Þ þ b11 sinðmb
11 þ t11Þ

a11 cosðma
11 � t11Þ þ b11 cosðmb

11 þ t11Þ
;

tan z2 ¼
�a11 cosðma

11 � t11Þ þ b11 cosðmb
11 þ t11Þ

a11 sinðma
11 � t11Þ � b11 sinðmb

11 þ t11Þ
:
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